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Abstract 12 

 13 

Rips currents and other surf hazards are an emerging public health issue globally. Lifeguards, 14 

warning flags and signs are important and to varying degrees they are effective strategies to 15 

minimize risk. In the United States and other jurisdictions around the world, lifeguards use 16 

coloured flags (green, yellow and red) to indicate whether the danger posed by the surf and rip 17 

hazard is low, moderate, or high respectively. The choice of flag depends on the lifeguard 18 

monitoring the changing surf conditions along the beach and over the course of the day using both 19 

regional surf forecasts and careful observation. There is a potential that the chosen flag does not 20 

accurately reflect the potential risk, which may increase the potential for rescues or drownings. In 21 

this study, machine learning used to determine the potential for error in the flags used at Pensacola 22 

Beach, and the impact of that error on the number of rescues. A decision tree analysis suggests 23 

that the wrong flag was flown on ~35% of days between 2004 and 2008 (n=396/1125), and that 24 

those differences account for only 17% of all rescue days and ~60% of the total number of rescues. 25 

Further analysis reveals that the largest number of rescue days and total number of rescues is 26 

associated with days where the flag deployed over-estimated the surf and hazard risk, such as a 27 

red or yellow flag flying when the model would suggest a green flag would be more appropriate 28 

based on the wind and wave forcing. Regardless whether this is a result of the lifeguards being 29 

overly cautious or the rip and surf hazard is associated with weak rips forced by a transverse-bar 30 

and rip morphology, the results suggest that beach users are discounting the lifeguard warnings if 31 

it isn’t consistent with how they perceive the surf hazard. Results suggest that machine learning 32 

techniques have the potential to support lifeguard and thereby reduce the number of rescues and 33 

drownings.  34 

 35 
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Introduction  37 

 38 

Rip currents are the main hazard to recreational swimmers and bathers, and, in recent years, 39 

have been recognized as a serious global public health issue. Rips are strong, seaward-directed 40 

currents that can develop on beaches characterized by wave breaking within the surf zone (Castelle 41 

et al., 2016), and capable of transporting swimmers a significant distance away from the shoreline 42 

into deeper waters. Weak swimmers or those who try and fight the current can become stressed 43 

and experience panic (Brander et al., 2011; Drozdzewski et al., 2015) leading to increased 44 

adrenaline, an elevated heart rate and blood pressure, and rapid and shallow breathing. On 45 

recreational beaches in Australia and the United States, rips have been identified as the main cause 46 

of drownings and are believed to be responsible for nearly 80% of all rescues (SLSA, 2017; USLA, 47 

2017). It is estimated that the annual number of rip current drownings exceeds the number of 48 

fatalities caused by hurricanes, forest fires, and floods in Australia, the United States, and Costa 49 

Rica (Brander et al., 2013; NWS, 2017; Arozarena et al., 2015), but recent evidence suggests that 50 

public knowledge of this hazard is limited (Brannstrom et al., 2014; 2015) and that few people are 51 

interested in rip currents compared to other hazards (Houser et al., in press).  52 

Many beaches have warning signs at primary access points to warn beach users of the rip 53 

hazard, but recent studies suggest that signs may not be effective (e.g. Matthews et al., 2014; 54 

Brannstrom et al. 2015). Many beaches also use a combination of beach flags to either designate 55 

the location of supervised and safe swimming areas (e.g. Australia and the United Kingdom), or 56 

areas and times to avoid entering the water (e.g. Costa Rica and the US). Unfortunately, not every 57 

country uses the same flagging convention and there are regional variations that can lead to 58 

confusion amongst beach users. The United States and Canada use green, yellow, and red coloured 59 

flags to indicate whether the danger posed by the surf and rip hazard is low, moderate, or high, 60 

respectively (ILSF, 2004). A beach manager or lifeguard decides on the surf hazard and the flag 61 

to fly based on a combination of daily updates on rip conditions provided by local lifeguards as 62 

well as a rip forecast from the US National Weather Service (NWS). Most rip forecasts are based 63 

on a simple correlation between the number of rip-related rescues and meteorological and 64 

oceanographic conditions on that day (Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and 65 

Seim, 2013; Kumar and Prasad, 2014; Scott et al., 2014; Moulton et al., 2017). These forecasts do 66 

not account for the surf zone morphology, which may be conducive to the development of rips on 67 
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days when wave breaking is relatively weak. Even under ‘green flag’ days, the presence of shore-68 

attached nearshore bar (called a transverse bar and rip morphology) can force a current of ~0.5 m 69 

s-1 that can pose a threat to weak swimmers (Houser et al, 2013).  70 

The presence of a rip when the forecast predicts that the hazard potential is low, can put 71 

beach users at risk when a lifeguard is not present and able to intervene/rescue. To be effective, 72 

the flag system requires lifeguards to continuously assess surf conditions and monitor swimmers 73 

and bathers, and ultimately intervene if someone does not heed the warning flag. Recent evidence 74 

suggests that many beach users do not adhere to warnings if their own experience (whether 75 

accurate or not) or behavior of others on the beach, contradicts the hazard, as indicated by the 76 

warning flag (Houser et al., 2017; Menard et al., 2018). Beachgoers may lose trust in authority (i.e. 77 

the lifeguards) if a forecast is perceived, wrongly or rightly, to be inaccurate (Espluga et al., 2009). 78 

If the forecast is for dangerous surf conditions and a yellow or red flag is placed on the beach when 79 

conditions appear to be relatively calm, the beach user may discount or ignore the forecast now 80 

and in the future. Trust and confidence in the authority figures has been eroded and they believe 81 

that the lifeguards are being overly-cautious. It can be difficult to change (or ‘reset’) public 82 

perception about the accuracy of the flag system as soon as a discrepancy is perceived, and 83 

subsequent visits and experiences may confirm the biases of the beach user (Houser et al., 2018). 84 

It is a situation analogous to the boy who cries “wolf” (Wachinger et al., 2013).  85 

This study examines the consistency of flag warnings at Pensacola Beach, Florida between 86 

2004 and 2008 when daily data is available for flag colour, wind and wave forcing, as well as the 87 

number of rescues performed by lifeguards. A decision tree, a form of machine learning, is used 88 

to predict the posted flag colour using lifeguard observations in combination with wind and wave 89 

forcing. The modelled flag colour can be compared to the posted flag colour on a particular day to 90 

identify days when there is a discrepancy between the posted and predicted flag colours, which is, 91 

in turn, compared to the number of rescues performed on that day. It is hypothesized that there 92 

will be a greater number of rescues performed on days when there is a discrepancy between the 93 

predicted and posted flag colour.   94 

 95 

Study Site 96 

 97 
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The analysis was completed for Pensacola Beach, Florida where there is in an available 98 

record of daily flag colours, wind and wave forcing, and lifeguard-performed rescues. The beaches 99 

of the Florida Panhandle have been described ‘‘as the worst in the nation for beach drowning’’ 100 

(The Tuscaloosa News, 2002), based on the presence of semi-permanent rips along the length of 101 

the island (Houser et al., 2011; Barrett and Houser, 2012). These rips can be active and pose a 102 

threat to swimmers when conditions may appear to be safe for swimming (Houser et al., 2013). 103 

During the period of the study (2004-2008), the Santa Rosa Island Authority maintained a flagging 104 

system to alert beach users about the heavy surf and rip hazard based on the NWS rip forecast. The 105 

highest flag colour for that day was recorded by the Island Authority, along with the number of 106 

prevents, assists, and rescues. The Island Authority reserve the rescue definition for those persons 107 

in extreme difficulty who, in the opinion of the lifeguard, would have drowned without assistance.  108 

Rescues, assists, and prevents are recorded regardless of whether they are conducted in a 109 

‘guarded’ area, a designated swimming area where there are typically many beach users (Casino 110 

Beach, Fort Pickens Gate Beach, and Park East), or along the ~13 kms of unguarded beach where 111 

lifeguards conduct regular patrols and respond to emergency calls. As shown by Barrett and 112 

Houser (2013), there are rip current hotspots with semi-permanent alongshore variation in the 113 

nearshore morphology due to a ridge and swale bathymetry on the inner-shelf. The innermost bar 114 

varies alongshore at a scale of ~1000 m, consistent with the ridge and swale bathymetry, and tends 115 

to exhibit a transverse bar and rip morphology immediately landward of the deeper swales. 116 

Historically, most drownings and rescues on this popular beach have occurred at these rip hotspots 117 

because they correspond to the main access points along the island (Houser et al., 2015; Trimble 118 

and Houser, 2018).  119 

 Santa Rosa Island experienced widespread erosion and washover during Hurricane Ivan in 120 

September, 2004. The storm reinforced the alongshore variation in the nearshore bar morphology 121 

and forced the bars farther offshore. As described in Houser et al. (2015), the nearshore bars 122 

migrated landward and recovered to the beachface for 3 years following the storm. During this 123 

period, the inner-bar morphology transitioned from a rhythmic bar and beach morphology to a 124 

transverse bar and rip morphology before ultimately attaching to the beachface in May 2008 125 

(Houser and Barrett, 2010). This changing bar morphology is a primary control on the presence of 126 

rip channels, with the greatest density of rips present in 2005 as the inner-most bar first started to 127 

develop a transverse bar and rip morphology (Houser et al., 2011).  128 
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 129 

Methodology 130 

 131 

Offshore wave conditions and wind forcing function are based on long-term meteorological 132 

and oceanographic records from two offshore wave buoys located near the study region (buoy 133 

42039 and 42040). The available wave data included offshore wave height, period, and direction, 134 

and the wind data included speed and direction. A decision tree analysis was used to determine 135 

what combination of wave and wind forcing was associated with the flag posted by the Santa Rosa 136 

Island Authority on that day. After training on the available dataset, the model produces a decision 137 

tree that can be used for future decisions about what flag should be posted, although further training 138 

would be required to validate the model and operationalize. The modelled (i.e. predicted) flag 139 

colour is then compared to the posted flag colour for all days to determine if there is a relationship 140 

between the flag colour and rescues. The comparison is also used to determine if there is a specific 141 

combination of wind and wave forcing on the days when the modelled flag colour and the posted 142 

flag colour do not align.  143 

The decision tree model was developed using the Chi-square Automatic Interaction 144 

Detector (CHAID) technique developed by Kass (1980). The goal of CHAID analysis is to build 145 

a model that helps explain how independent variables can be merged to explain the results in a 146 

given dependent variable. To develop a decision tree, the first step is declaring the root node, this 147 

corresponds to the target variable that will be predicted throughout the model. Then, the 148 

independent variable that provides the most information about the target values is identified. The 149 

root node is then split on this independent variable into statistically significant different subgroups 150 

using the F-test. These subgroups are then split using the predictor variables that provide the most 151 

information about them. CHAID analysis continues this process until terminal nodes are reached 152 

and no splits are statistically significant.  153 

 154 

Results 155 

 156 

The decision tree model was trained on 1125 days with complete data between 2004 and 157 

2008 during which there was 145 days with rescues. The annual number of rescues and rescue 158 

days varied by year with a peak in both the total number of rescues and the number of rescue days 159 
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in 2005. The number of rescues was at a minimum in 2007, while the number of rescue days was 160 

at a minimum in 2006. The number of rescues decreased linearly between 2005 and 2007 as the 161 

nearshore bar morphology continued to recover following Hurricane Ivan and welded to the 162 

beachface consistent with previous observations at the site (Houser et al., 2011).  163 

The decision tree analysis suggests that the posted flag was not predicted by the model on 164 

35% of days between 2004 and 2008 (n=396). There was a total of 342 rescues over 66 days when 165 

the model predicted a different flag than was posted representing over 60% of all rescues (Table 166 

1). By comparison, 40% of all rescues (n=224) occurred over 79 days when the predicted and 167 

posted flags were the same. Chi-square analysis suggests that the number of rescue days is 168 

significantly greater at the 95% confidence level when the predicted and posted flags are different 169 

(c2=7.77, r~0.005). This supports the primary hypothesis that there will be a greater number of 170 

rescues performed on days when there is a discrepancy between the predicted and posted flag 171 

colour.   172 

 173 

Table 1.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 174 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   175 

 Rescue Days No Rescue Days  

Posted=Predicted 79 650 c2=7.77, r~0.005 

Posted≠Predicted 66 330 

 176 

Chi-square analysis was also used to determine if the number of rescue days depends on 177 

whether the model predicts a flag of greater or lesser hazard compared to the posted flag (Table 178 

2). Results suggest that the number of rescue days is greater when the model predicts hazardous 179 

surf (i.e. red or yellow flag) but the posted flag was either yellow or green (c2=18.11, r~0.0001). 180 

The number of rescue days was over-represented when the posted flag colour was red or yellow 181 

but the model predicted that the flag should have been yellow or green, respectively, suggesting 182 

that posting a overly-cautious flag can present a danger. These 47 days associated 268 of the total 183 

566 rescues between 2004 and 2008, or ~7.2 rescues per day when the island authority was overly-184 

cautious in their flag choice. In comparison, the number of rescues was under-represented on days 185 

when the posted flag suggested conditions were not as hazardous as the model or were identical to 186 

the model.  187 

 188 
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Table 2.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 189 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   190 
 191 

 Rescue Days No Rescue Days  

Posted>Predicted 47 171 c2=18.11, r~0.0001 

Posted<Predicted 19 159 

Posted=Predicted 79 650 

 192 

The greatest number of rescues were performed on days when the posted flag was yellow 193 

(moderate hazard, moderate surf and/or currents) but the model predicted a green flag (low hazard, 194 

relatively calm surf and/or currents) based on the wind and wave forcing. A total of 231 rescues 195 

were performed on 37 of the 168 days when the posted flag was yellow and the model predicted 196 

flag colour was green. In comparison, there were only 12 rescues on 3 of 20 days when the posted 197 

flag was red (high hazard, strong surf and/or currents) and the model predicted flag colour was 198 

green. Finally, there were 25 rescues preformed on 7 of 30 days when a red flag was posted and 199 

the model predicted a yellow flag was appropriate. The number of rescues and rescue days when 200 

the posted flag was more cautious than predicted by the model were at a maximum in 2005 and 201 

linearly decreased to a minimum in 2007 as the bar morphology recovered from Hurricane Ivan.  202 

While there were fewer than expected rescue days when the posted flag was green or 203 

yellow and the model predicted a yellow or red flag was appropriate, rescues were still performed 204 

on those days. There was a total of 66 rescues on 13 of 80 days when the posted flag was yellow, 205 

but the model predicted a red flag should be posted (Table 3). Only 7 rescues were performed on 206 

5 of the 83 days when the posted flag was green and the model predicted a yellow flag, with even 207 

fewer rescues performed on days when the posted flag was green but should have been red. The 208 

number of rescues and rescue days when the posted flag was lower than the predicted flag 209 

decreased from 2004 to 2007, with a statistically significant outlier in 2008. The large number of 210 

rescues in 2008 is the result of 2 days with 13 rescues each (April 19 and September 14), when a 211 

yellow flag was being flown but the model predicted a red flag was more appropriate.  This 212 

suggests that the difference between posted and predicted flag colours can vary inter-annualy with 213 

changes in the nearshore morphology and/or changes in the individual who makes the flag 214 

decision.   215 

 216 
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 217 
Table 3. Number of days and rescues (in brackets) based on the combination of posted and 218 
predicted flag colours.  219 
  Predicted Flag 

  G Y R 

Posted Flag G 475 (48) 83 (7) 15 (1) 

Y 168 (231) 154 (125) 80 (66) 

R 20 (12) 30 (25) 100 (51) 

 220 

Discussion 221 

Results of the present study suggest that over 60% of all rescues at Pensacola Beach, 222 

Florida between 2004 and 2008 occurred on days when the posted hazard flag was different from 223 

the flag predicted by a decision tree model. The model was trained using average wind and wave 224 

forcing at buoys offshore and the flag colour selected by the Santa Rosa Island Authority over the 225 

entire study period. The posted flag was not predicted by the model on 35% of days between 2004 226 

and 2008 (n=396), with one or more rescues occurring on 66 of those days (~17%). While rescues 227 

did not occur on a vast majority of the days when the posted and predicted flag were different, they 228 

accounted for a disproportionately large number of the rescues. This is not to suggest that Santa 229 

Island Authority made a mistake in their flag choice. Rather, the results suggest that the difference 230 

between the posted and predicted flag colours is associated with the morphology of the innermost 231 

nearshore bar, which is not captured by a model and forecast based on wind and wave forcing 232 

alone. The decisions made by the beach manager and lifeguards are not only dependent on the 233 

wind and wave forecast, but also their assessment of the morphology and the potential for rip 234 

development based on experience and years of careful observation. These discrepancies between 235 

model-predicted and manager-posted flag colours provide a basis for future model development 236 

and expansion. Increasing the volume of available data into the future, through continuous 237 

collection, can broaden the information provided to the model, contributing to model evolution is 238 

better able to account for subtle distinctions while remaining computationally efficient. 239 

Furthermore, introducing additional variables, such as nearshore morphology, to the model has the 240 

potential to better capture a lifeguard or beach manager’s intuition associated with dangerous surf 241 

conditions.  242 
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The model predictions and most forecasts are based solely on wind and wave forcing 243 

(Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and Seim 2013; Arun Kumar and Prasad, 244 

2014; Scott et al., 2014; Moulton et al., 2017). Noticeably absent from the current model is surf 245 

zone morphology, which ultimately determines whether a rip can develop under those conditions 246 

or not. The beach manager and lifeguard can observe the nearshore morphology and assess the 247 

potential for rip development, which would lead to them putting out a yellow or red flag when the 248 

model would predict a green or yellow flag is appropriate. While beach managers and lifeguards 249 

are being prudent, their assessment may not conform to those of the beach user who decides on 250 

whether the water is safe or not based on wave breaking (Caldwell et al., 2013; Brannstrom et al., 251 

2013; 2015). Most beach users assume that larger breaking waves are more dangerous, and many 252 

will not enter the water if they (and the model) believe that it is red flag conditions. This may 253 

partially explain why there were fewer than expected rescues on days when the posted flag colour 254 

was overly-conservative (e.g. green or yellow flag was posted when the model predicted a yellow 255 

or red flag, respectively). Independent of the flag or warning signs, beach users appear to be 256 

making personal decisions about the surf and rip hazard (Brannstrom et al., 2015) based on 257 

experience at the site or elsewhere (see Houser et al., 2018). Whether this erodes beach users’ 258 

confidence in the lifeguards and other authorities managing the beach is an important question for 259 

future research.  260 

 A large number of rescues occurred when the posted flag was yellow but the model 261 

predicted the wind and wave forcing warranted a green flag. Rightly or wrongly, the beach user 262 

will observe that wave breaking is limited and assume that conditions must be safe. As shown by 263 

Caldwell et al. (2013) and Brannstrom et al. (2013) most beach users along the Gulf Coast of the 264 

United States assume that the calm flat water of a rip is safer than adjacent areas where the waves 265 

are breaking. The lifeguard, however, may observe a bar morphology that is conducive to the 266 

development of rips and post a yellow flag to warn about the potential for rips, despite the weak 267 

wind and wave forcing. As observed by Houser and Barrett (2012), rips with speeds of ~0.5 m/s 268 

can develop on ‘green flag’ days because of the transverse bar and rip morphology that is present 269 

in the inner-nearshore. It is difficult for beach users to spot a rip or assess the potential for rip 270 

development, and they may assume that the lifeguard is being overly cautious. Going to the beach 271 

is a reward-based activity, and many people commit significant personal and financial investment 272 

to be at the beach (Houser et al., 2018). If they believe that the lifeguard is ‘wrong’ they will ignore 273 
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the warning and remain committed to entering the water. The longer and more times that their 274 

perceptions are inconsistent with the experience and knowledge of the lifeguard, the more trust in 275 

authority is eroded - a beach that is perceived to be safe based on experience will always be safe 276 

despite warnings to the contrary. This is an example of confirmation bias, in which an opinion 277 

quickly becomes entrenched and subsequent evidence is used to either bolster the belief or is 278 

rapidly discarded. How this can be addressed to reduce the number of rescues is an important focus 279 

for future research on rips and other hazards in general.  280 

The results of this study also highlight the limitations of the rip forecasts that are used in 281 

the United States and elsewhere around the world. A forecast based solely on the wind and wave 282 

forcing does not account for the nearshore morphology, which determines the potential for rip 283 

development. This raises one of the most important considerations for future modeling efforts 284 

based on machine learning techniques - the model will only be accurate if the bar morphology and 285 

conceptual knowledge of the lifeguard is included as input variables. Getting the beach user to 286 

observe and heed that forecast and warning, however, will remain a challenge.   287 

 288 

Conclusions 289 

Lifeguards and beach managers decide on warnings and flag colours based on careful 290 

monitoring of the changing surf conditions along the beach and over the course of the day using 291 

both regional surf forecasts and direct observation. A decision tree analysis predicts a flag colour 292 

different to the one flown on ~35% of days between 2004 and 2008 (n=396/1125), and that those 293 

differences account for only 17% of all rescue days and ~60% of the total number of rescues. The 294 

posting of a yellow flag when the model would predict a green flag based solely on the wind and 295 

wave forcing was found to be responsible for the largest number of rescues over the study period. 296 

The nearshore morphology and the potential for rip development is not included in traditional 297 

forecasts, and most beach users use a simple assessment of wave breaking to determine if the water 298 

is safe. Even though a lifeguard will post the appropriate flag based on direct observation of the 299 

bar morphology and experience, the beach user, like simple models based solely on meteorological 300 

data, may not believe that warning and still enter the water. This suggests that reducing the number 301 

of rip and surf rescues will require that we are able to address confirmation bias on the part of the 302 

beach user, which can erode their confidence in the lifeguards.  303 

 304 
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